Logo

American Heart Association

  22
  0


Final ID: Tu126

Unveiling the Role of GRAF1 in Orchestrating Mitophagy and Metabolic Flexibility in Stressed Cardiomyocytes

Abstract Body: Mitochondria are essential for cardiomyocyte contraction by generating ATP and orchestrating metabolic pathways. Understanding how mitophagy—selective removal of damaged mitochondria in lysosome—and metabolic flexibility are coordinated is crucial for cardiac function under physiological and pathological conditions. Our study explores the molecular mechanisms behind this coordination in cardiomyocytes.
We identify GRAF1(Arhgap26) as a pivotal mediator in PINK1-Parkin dependent mitophagy, facilitating damaged mitochondria clearance and regulating mitochondrial substrate flexibility. Depletion of GRAF1 in neonatal rat ventricular cardiomyocytes (NRVCMs) compromises mitochondrial function, evidenced by reduced membrane potential, impaired oxidative phosphorylation, and elevated cleaved Caspase 3 levels. Moreover, GRAF1 depletion attenuates LC3II activation and increases mitochondrial mass following toxin-induced stress. Using tamoxifen-inducible cardiomyocyte-restricted GRAF1 knockout mice (GRAF1CKO), we observe normal cardiac function under basal conditions. However, upon isoproterenol (ISO) treatment, GRAF1CKO mice display cardiac dysfunction and reduced mitophagy. Metabolomics analysis reveal distinct metabolic signatures between ISO-treated control and GRAF1CKO mice, with impaired fuel flexibility observed in GRAF1CKO mice, as highlighted by impaired glucose utilization relative to control mice. Mechanistically, phosphorylation of specific sites (S668, T670, and S671) within the proline-rich region of GRAF1 by PINK1 or PINK1-dependent kinases regulates its dual functions. This phosphorylation event releases the autoinhibitory state of the SH3 domain, enabling it to interact with ABI2 and WAVE2 complex for actin remodeling necessary for efficient mitochondria clearance. Additionally, phosphorylation enhances GRAF1’s affinity for Malonyl-CoA Decarboxylase (MCD), promoting MCD degradation and subsequent elevation of cellular malonyl-CoA levels. This rise in malonyl-CoA inhibits carnitine pamitoyl transferase-I (CPT-I), thereby suppressing fatty acid oxidation while promoting glucose oxidation in mitochondria, contributing to the mitochondrial metabolic flexibility.
In summary, our findings elucidate GRAF1's role in orchestrating mitophagy and metabolic flexibility in stressed cardiomyocytes. GRAF1 phosphorylation serves as a molecular switch, ensuring efficient mitochondrial clearance and substrate utilization to maintain cardiac energetics and function.
  • Zhu, Qiang  ( University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , United States )
  • Combs, Matthew  ( University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , United States )
  • Mack, Christopher  ( UNIVERSITY OF NORTH CAROLINA , Chapel Hill , North Carolina , United States )
  • Taylor, Joan  ( University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , United States )
  • Author Disclosures:
    Qiang Zhu: DO NOT have relevant financial relationships | Matthew Combs: No Answer | Christopher MacK: DO NOT have relevant financial relationships | Joan Taylor: No Answer
Meeting Info:

Basic Cardiovascular Sciences

2024

Chicago, Illinois

Session Info:

Poster Session and Reception 2

Tuesday, 07/23/2024 , 04:30PM - 07:00PM

Poster Session and Reception

More abstracts on this topic:
Endothelial Sirt3 deficiency and SOD2 acetylation voids female protection from hypertension

Dikalova Anna, Ao Mingfang, Gius David, Dikalov Sergey

Acetylation of Mitochondrial Cyclophilin D Increases vascular Oxidative Stress, Induces Glycolitic Switch, Promotes Endothelial Dysfunction and Hypertension

Dikalov Sergey, Sack Michael, Dikalova Anna, Fehrenbach Daniel, Mayorov Vladimir, Panov Alexander, Ao Mingfang, Lantier Louise, Amarnath Venkataraman, Lopez Marcos, Billings Frederic

You have to be authorized to contact abstract author. Please, Login
Not Available